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Abstract 

The paper presents a method and algorithm for determining input signals which maximize the absolute value of
error. Being maximum, the values of these errors are valid for any dynamic signal which might occur at the
input of a real system. In this way all the possible signals are taken into consideration at the same time. It should
be stressed that these can be non-determined signals whose form cannot be predicted a priori. Two types of
signals are taken into consideration: signals with a magnitude constraint and signals constrained in magnitude
and rate of change. Solutions derived in the paper enable calculation of the absolute value of error by means of 
analytical formulae which give precise results and can be realised in a very short time. 
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1. Introduction 
 

In measurement of dynamic signals the absolute value of error is of essential importance, 
especially for tracking systems and systems intended for measurement of signal shape. Such 
systems are commonly applied in many different branches, e.g. in electrical metrology 
(transducers, filters, strain gauge amplifiers, measuring microphones etc.), in geodesy 
(accelerometers, vibrometers etc.), in medicine (electroencephalographs, cardiographs etc.), in 
meteorology (autocomparators, autobridges etc.). For systems of such type input signals are 
unknown and can not be determined in advance. Also the rated operation conditions of these 
systems are very difficult to define as they usually work in a dynamic mode, far from a steady 
state. For that reason there is no point in determining the errors by means of typical standard 
signals as the results received depend essentially on the input signals for which they are 
computed. Moreover, in practice real systems are not excited by standard signals, but usually 
by unknown dynamic signals which are decidedly different from the standard ones. It should 
be noted, however, that the solution of a problem posed in a way which could make the error 
values independent of the input signal form is possible for maximum errors. But the 
procedure of determination of maximum errors requires special input signals to be used, 
which warrant that the error values determined with them will always be higher or at least 
equal to the value generated by any other signal. Below we will determine shapes of such 
signals constrained in magnitude, and simultaneously in magnitude and rate of change.  
 
2. General assumption 
 

Let the mathematical model of a calibrated system be given by a state equation 
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and the system constituting its standard be given by a similar equation 
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Let us introduce a new state equation  
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in which 
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where in (1)-(4) u(t) and y(t) are input and output respectively, )(tx is state vector, A, B, C are 
real matrices of corresponding dimensions. 
 
3. Shape of signals with one constraint 
 

Below, for the output y(t) Eq. (3) presenting the error between the systems (1) and (2) we 
shall determine the input signal )()( 0 tutu = constrained in magnitude  
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which maximizes its value over the interval ].,0[ T  For this purpose let us write the error in the 
form of a convolution integral 
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where 
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From (6) it directly results that the maximum value of )(ty  occurs for t =T  
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if 
)]([)(0 ττ −⋅= Tksignau ,                                                         (9) 

 
where a is magnitude, and 
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Changing τ  for t we can write  
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And )(0 tu maximizing (11) has now the form  
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which, for tn switchings in nttt ...,,, 21  and the assumption that the first switching occurs from 
+a  to - a, can be determined by means of the following relation 
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where ,,0 10 niforTtt i === +    n - number of switchings. 
Substitution of (12) into (11) gives finally 
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which is not difficult to compute. 
 
4. Shape of signals with two constraints 
 

Let us suppose now that on signals u(t) two simultaneous constraints with respect to their 
magnitude (5) and rate of change  ϑ  (15) are imposed 
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Let us present )(tu  by means of the integral 
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then the error can be written in the following form 
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and constraints (5) and (15) referring to u(t) for function )(τϕ are now as follows 
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and  
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Changing the integration order in (17), we have 
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and after replacing τ  for ,t  we get finally 
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From (21), it is evident that ),(tϕ  which maximizes ),(Ty  has the maximum magnitude 
ϑϕ ±=)(t  by virtue of the formula (19) if 
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and ,0)( =tϕ  in such subintervals, for which the resulting form (22) between the switching 
moments is 
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Using equations (15) - (23) we can determine signal u(t) = u0(t) in the following cases: 
 
First case 
 

If |)(|
0

0 adf
t

≠∫ ττ  for δ  varying in the intervals ],0[ ϑ+  and ],,0[ ϑ−  (Fig. 1 and Fig. 2), 

where ϑ±=)(0 tf for ∫ +>−
T

t
dTk δττ )(  and ∫ −<−

T

t
dTk δττ )(  respectively, then the signal )(0 tu  is 

determined in three following steps, according to Eqs. (4.10)-(4.16). 
 

 
 

Fig. 1. Exemplary function ∫ −
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During the first step, the ‘bang-bang’ functions )(1 tf  of the magnitude ϑ±  are determined 
with switching moments resulting from (24) - Fig. 3. 
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Fig. 2. Constraints resulting from ∫ +>−
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Fig. 3. Exemplary functions k (t), ∫ −
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In the second step, we obtain the function )(2 tf by integrating )(1 tf  - Fig. 4.  

Function )(2 tf  at particular switching intervals nttt ...,,, 21  of )(1 tf  is given by the following 
relations for 1,1 =≤ ntt  
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for  2,21 =≤< nttt  
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for  ,,...,,3,2, 11 Ttnittt nii ==≤< ++  −n number of switchings 
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Fig. 4. Functions f1(t) and ∫=
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In the last step, we determine the function )(3 tf on the basis of  ).(2 tf  Relations are as 

follows 
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Finally, we obtain the signal )()( 0 tutu =  through integration of )(3 tf and this is the aim.  
The operation is shown in Fig. 5. 

 

 
 

Fig. 5. Function f3(t) and signal ∫=
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During the intervals in which ϑ±=)(3 tf , the signal waveform is triangular, with the slope 
of ϑ± . In the intervals when 0)(3 =tf , the signal is a constant of the magnitude ± a .   

For n switching moments of )(3 tf the value of error is described by the following 
equations: 
for  n = 1 
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for  n ≥ 2 
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where ),(0 ii tuh = ).(0 TuhT =   
Fig. 6  presents the signal )(0 tu and  the error )(ty corresponding to it. 
 

 
 

Fig. 6. Signal )(0 tu and error y(t). 
 
Second case 
 

If  aT ≤⋅ϑ , signal )(0 tu is given directly by  
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and the error equals 
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Fig. 7  presents the signal )(0 tu and error )(ty  corresponding to it. 
 
 



 
 

Fig. 7. Signal )(0 tu  and error )(ty .  
 
Third case 
 

If aT >⋅ϑ  then the signal )(0 tu  is determined indirectly by means of the functions )(4 tf -
)(6 tf  
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The functions )(4 tf  and )(5 tf  are shown in Fig. 8, while )(6 tf and the signal ∫=
t

dftu
0

60 )()( ττ  

in Fig. 9. 

 
 

Fig. 8. Functions )(4 tf and )(5 tf . 



 

 
 

Fig. 9. Function )(6 tf  and signal )(0 tu . 
 
Fig. 10 shows the signal )(0 tu and the error )(ty corresponding to it. 
 

 
 

Fig. 10. Signal )(0 tu  and error )(ty . 
 
5. Conclusion 
 

The paper presents a method for determining signals which maximize the absolute value of 
error. The error determined by means of such signals corresponds  to the errors of  maximum 
value describing the classes of accuracy in the case of instruments intended for static 
measurement. Therefore the solutions presented in the paper can find practical application in 
calibration of different measuring systems intended for measurement of dynamic signals. 
Particularly these signals can be non-determined whose form we are not able to predict in 
advance. The value of the error calculated by means of formulae derived in this paper is 
precise, and can be received in a very short calculation time. It is due to the limit of the 
possible solutions to signals of rectangular, triangular or trapezoid shapes. 
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